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A REVIEW OF FLIGHT AND WIND TUNNEL MEASUREMENTS

OF BOUNDARY LAYER PRESSURE FLUCTUATIONS

AND INDUCED STRUCTURAL RESPONSE

by David Alan Bies
Bolt Beranek and Newman Inc.

SUMMARY

A review is presented of available data on boundary

layer pressure fluctuations and induced structural response,

from flight and wind tunnel investigations. The wind tunnel

data include flat plate pressure fluctuation spectra and

space-time correlations, displacement and acceleration spectra

of flat flexible panels, and sound power spectra radiated

by flat flexible panels. The flight data include pressure

fluctuation spectra and "equivalent acoustic spectra," the

acoustic fields that would produce the same response as

the aerodynamic fields.

In order to use the same normalization procedure with

all the data, engineering curves have been derived for

estimating boundary layer parameters. These curves extend

the estimates to Mach numbers up to 4 and Reynolds numbers

based on a characteristic length up to 2 x lO 9.

The pressure fluctuation data show considerable

scatter, especially in the wind tunnel investigations.
The experimental results suggest that the scatter may

be due to highly localized flow perturbations. It is

argued that these perturbations may not be significant
in determining structural response. General recommendations

are given to guide experimental studies. A simplified

procedure for estimating boundary layer pressure spectra

is given in an appendix.

INTRODUCTION

With the advent of high performance flight vehicles,

aerodynamlcally-lnduced vibration has become of great

significance to the vehicle designers. Aerodynamic



excitation may come about through various causes, such
as flow over cavities or around steps, base pressure
fluctuations, or loosely attached shock waves. One form
of significance which has received much attention is
that due to pressure fluctuations in the turbulent boundary
layer over the vehicle skin. This source may be of parti-
cular significance to the supersonic transport designer.

A large literature exists that reports measurements
of boundary layer pressure fluctuations over flat plates
in wind tunnels and on the surfaces of various flight
vehicles, evidencing a lively interest in such phenomena.
Unfortunately, it is difficult to draw general conclusions
from this literature because there is no uniformity of
reporting the data. The interest which has prompted
the many investigations has also prompted the writing
of this report in which an attempt is made to Intercompare
published data and draw general conclusions.

In most cases of reported flight vehicle measurements,
no information is given about the boundary layer. If one
is to compare boundary layer pressure fluctuation measurements
with each other or with wind tunnel measurements, some
estimates of the boundary layer parameters must be provided.
In addition many wind tunnel measurements are reported
in such a way that intercomparison is rendered difficult,
and here too some means for estimating missing information
is required.

The path followed in this report follows from the
stated objective and _he problems listed above. Thus
the first task is to construct a set of procedures and
engineering curves by which boundary layer parameters
can be estimated. This Information is contained in the
section labeled Boundary Layer Parameters. The literature
and the procedures involved in generating the data given
in this section are discussed in Appendix A.

A second Pr_m _rises in the _onsideration of the
measurement of boundary layer pressure fluctUati_ons due_i
to the natural loss in sensitivity of a finite-slze pressure
transducer at high frequencies and short wavelength.
This problem has been the subject of much discussion and
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has been dealt with in various ways by various investigators.

An effort has been made to give this matter consistent

treatment in this report through work outlined in the

section Microphone Size Correction.

In the section on Wind Tunnel Measurements, the

results of pressure fluctuation measurements and correlation
studies of the turbulent boundary layer over flat plates

are discussed. Based on this material, a simplified procedure

for estimating boundary layer pressure spectra is given in

Appendix B. In addition a number of published papers on

wind tunnel investigations of the response of panels to

turbulent boundary layer excitation are reviewed, and the

principal findings are summarized.

The results of a number of flight vehicle measurements

of turbulent boundary layer pressure fluctuations and

of response of structures to such excitation are given

in the section on Flight Measurements. It is shown in
this section that the available data form a fairly consistent

and comprehensive picture of the phenomena.

The last section called Conclusions and Recommendations

summarizes the principal findings of this report and makes

some general recommendations for further work.

SYMBOLS

C I

C 2

C3,C 4

cf

_f

D

F(f)

M

spatial part of the correlation function

time part of the correlation function

spatial part of the correlation function in longi-
tudinal and traverse directions

local coefficient of skin friction

local coefficient of skin friction in transformed

coordinates (see ref. AT)

microphone diameter

pressure spectral density

local Mach number



q

R

r

Re s

Re x

Rey

Re 8

Re e

t

T

Ts

T
O_

iJ

Uc

U

x

Y

free stream Mach number

free stream dynamic pressure

space-time correlation function

recovery factor

Reynolds number based on distance from the wall
to the sublayer (see ref. A7)

Reynolds number based on distance x

Reynolds number based on distance from wall

Reynolds number based on boundary layer thickness
G

Reynolds number based on momentum thickness

Reynolds number based on momentum thickness in

transformed coordinates (see ref. A7)

time

temperature

temperature in the sublayer (see ref. A7)

temperature at the wall

free stream temperature

free stream stagnation temperature

local flow velocity

convection velocity defined by means of the turbulent

boundary layer correlation properties

free stream flow velocity _

coordinate in plane of wail in direction of flow,

distance from inception of turbulence on a flat plate

coordinate normal to the wall into the stream
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P

Poo

T

O_

coordinate in plane of wall transverse to direction
of flow

an exponent

ratio of specific heats

boundary layer thickness

displacement thickness

displacement transverse to direction of flow

constant displacement transverse to direction of
flow

momentum thickness

local gas viscosity

free stream gas viscosity

displacement parallel to direction of flow

constant displacement parallel to direction of flow _

local gas density

free stream gas density

time delay

a function (equation AI8)

frequency in radians per second

BOUNDARY LAYER PARAMETERS

As mentioned in the introduction, it seldom happens
that a complete description of the boundary layer is
presented with measurements of the boundary layer pressure
fluctuations. This shortcoming is especially true of
flight measurements and is also quite often evident in



published wind tunnel measurements. To remedy the total

or partial lack of such information, engineering curves
have been developed and are given in figures 1 through 4.

The information given in these curves is based on empirical

data discussed in Appendix A and is valid strictly for

unperturbed flow over a flat plate. We shall use the
information contained in the figures to supply missing

parameters in order to compare published and unpublished

boundary layer pressure fluctuation data. In doing so,

we shall attempt to represent the actual measurement

configuration by an equivalent flat plate model.

The procedure which has been used in the preparation

of this report is as follows. Typically, a report of

flight measurements of boundary layer pressure fluctuations

will give information about the location of the transducer,

air speed, and altitude. From the information about the

transducer location, an estimate of the characteristic

length to the point of inception of turbulent flow on

an equivalent flat plate is made. This characteristic
length is quite often taken as the distance to some leading

edge. With the altitude information and the characteristic

length estimate Just determined, an effective Reynolds
number is computed from ARDC standard atmosphere tables

(ref. 1). From the given air speed and the altitude

information, a Mach number is computed, again by use of
the ARDC standard atmosphere tables. The three bits of

derived information -- characteristic length, Reynolds

number, and Mach number -- are sufficient to determine

the four boundary layer parameters -- boundary layer
thickness using figure l, displacement thickness using

figure 2, momentum thickness using figure B, and local
skin friction coefficient using figure 4. Our normaliza-

tion procedure makes use of the displacement thickness
and the local skin friction coefficient.

MICROPHONE SIZE CORRECTION

Experimental and theoretical investigations have
shown that the finite size of a pressure transducer limits

its response in the upper frequency range. This happens
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because frequency and spatial extent are related so that

high frequency corresponds to small spatial extent.

Thus, at some frequency determined by the ratio of micro-

phone diameter to boundary layer displacement thickness

D/8*, cancellation between positive and negative pressures

begins to occur over the transducer surface.

This problem has been investigated by Corcos (ref. 2),
Willmarth and Roos (ref. 3) and Chandlramani (ref. 4).

Willmarth and Roos have shown theoretically and experi-
mentally that the earlier work of Corcos overestimates

the size correction for values of D/5* less than unity,

but for values of unity or greater Corcos's estimates
are correct. Corcosts estimates have been found to be

in satisfactory agreement with the results of experiment

f *
or a value of D/5 much larger than unity, according

to Gilchrist and Strawderman (ref. 5). Unfortunately,
the latter authors have not specified the size of this

parameter, but it may be estimated to be of the order

of eight by reference to the work of one of their co-workers
(ref. 6).

Chandiramani has independently estimated the micro-

phone size effect and has obtained slightly different

results from those of Willmarth and Roos. The expected
reduction in pressure sensitivity of a transducer due

to its finite size according to these authors is shown

in figure 5. The curve for D/0* of the order of unity

or greater is due to Corcos. The family of solid lines

for D/5* of 0.I, 0.2 and 0.5 is due to Willmarth and

Roos. The family of two dashed lines for D/0* of 0.33
and 0.66 is due to Chandiramani

In the presentation of data included in this report,

microphone corrections according to Corcos, Willmarth
and Roos have been included where sufficient information

was given by the author. However, in some cases it is

not clear that some such corrections have not already
been made. In cases of doubt no corrections have been

made. If the data has been corrected, this fact is indicated
in the corresponding figure.
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WIND TUNNEL MEASUREMENTS

Boundary Layer Pressure Fluctuations

Boundary layer pressure fluctuations have been measured
by many Investigators. Those whose work has been included
in this review (refs. 7 through 19) are listed in Table I.
Far convenience the references have been listed roughly
in order of increasing Mach number, and some of the parameters
pertinent to particular investigations are also listed.
The table serves as an index to the wind tunnel measurements
presented in figures 6 through 19.

The investigators listed in Table I have reported
their results in many different ways, so that it is difficult
to determine a general concensus. Following procedures
described earlier, we have attempted to determine reasonable
estimates for quantities which are sometimes missing in
published reports (such as the local coefficient of skin
friction), and we have used such estimates to recast
published work in the form shown in figures 6 through 19.
The normalization presented in these figures or very similar
normalizations have been used by a number of investigators,
and in those cases little or no change has been made in
the data as originally published.

The first thing that comes to mind as one scans
the data shown in the figures is the question, "How do
the various measurements compare?" Such a comparison
is shown in figure 20. Below a Strouhal number of unity,
there is quite a bit of agreement among most experimenters
on an upper boUnd of the spectrum. Above a Strouhal
number of unity, the upper bound of the spread is determined
by the work of Kistler and Chen (ref. 17). The lower
bound for all Strouhal numbers is determined by the work of
Harrison (ref. 8). In the latter case it is not clear
whether or not corrections for finite microphone size
were included by Harrison, so that no corrections have
been made in this report.

As an aid to the reader a line has been placed where
most of the data seem to cluster. Where the llne is
discontinued, the data is about equally distributed over

8
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TABLE I

MEASUREMENTS OF BOUNDARY LAYER PRESSURE FLUCTUATIONS

Investigator

Jorgensen, Donald W.
{ref. 7)

Harrison. M.
(ref. 8)

Baroudl, Ludwig,
+ Ribner (ref. 9)

Bakewell. H. P. Jr.,
et al _ref. 6)

Wilmarth + Wooldrldge
(ref. i0)

Bull, Wilby +
Blackman (ref. ll)

Murphy, J. S., et al
(ref. 12)

Serafini, J. S.
(ref. 13)

Maestrello. L.
(refs. 14 and 15)

Williams, D. J. M.
(ref. 16)

Kistler +Chen

(ref. 17)

Murphy, J. S. et al
(ref. 12) '

Westley, R.
(ref. 18)

Speaker + Ailman
(ref. 19)

Tunnel

Size + Type

Continuous
18" X 15"

Continuous
15" x 20"

Continuous
8" x 12"

Continuous

3-1/2" diam

Continuous
60" x 84"

Continuous
9" x 6"

Blowdown
12" X 12"

Continuous
8" X 18"

Continuous

7.3" x 3.5"

Continuous
6" X 2-1/2"

Continuous
18" X 20"

Blowdown

12" X 12"

Blowdown
5" x 5"

Blowdown
12" X 12"

Mach

No.

0.04
o.18

O.O4
o.18

0.04
0.15

0.I

0.2

o.3
0.5

0.59

0.6

0.63
0.78

1.2

1.5

3.5

3.46

2.91
3.96

0.42
3.45

Reynolds Mic _DSam.No.

(x)5 9 x I05_
214 x I0 v

(x)lx
4xlO-

(x)4 x 106

(x)3.1 x I05
3.8 x I0"

(x)o.5x lOl
3 x I0 r

(e)1.3 x 104

(x)l x I0_
1.4 x I0 v

(e)1.55 x io_

(e)4.9 x lO4

(e)l6 x
5[3 x i0_

Fig
No

6.7 6
11.4

1.2 7

0.092 8

o.31 9

4.0 lO

o.15 11
o.51

2.77 12

O. 195 13
1.33

0.45 14

5 15
8

i.I 16

0.43 17

18

o.17 19
1.3

(x) Reynolds number based on distance from inception of turbulence.

(8) Reynolds number based on momentum thickness.

9



the indicated range. The large spread leads one to ask
if a better normalizing scheme exists. For the consideration

of this question the work of Speaker and Ailman is useful

(ref. 19).

Speaker and Ailman report a large number of measurements

of unperturbed flow over a flat plate for a large range
of Mach numbers. In addition they provide a rather complete

list of various boundary layer parameters. Their report

shows quite a large variation in measured pressure fluctua-

tions across the plate, for any one Mach number. It is
clear that no choice of the given parameters would bring

their data together for a single Mach number, since none

of the parameters vary signlflcantly across the plate.

However, Speaker and Ailman do present a figure which
summarizes the mean of their findings for each Mach number.

These mean values are shown in figure 19.

Figure 19 shows the following interesting trend.
Above a Strouhal number of two where all of the data

curves roll off sharply, the trend is for the low and

high Mach number measurements to lie furthest to the right,
and the measurements close to Mach number unity furthest

to the left. A review of the boundary layer parameters

presented by Speaker and Ailman shows that the boundary

layer thickness, displacement thickness, and momentum
thickness show the same general behavior, being largest

at lowest and highest Mach numbers and smallest near unity

Mach number. Thus, normalization using either of the other

boundary layer thicknesses in computing the Strouhal number
would show the same general trend as shown by normalization

based on displacement thickness.

One might wonder if some combination of parameters,

perhaps involving a Reynolds number based on one of the

thicknesses, might give better normalization. The author

has not found any such dimensionless combination of parameters

which could significantly coalesce the high-frequency

rolloff portions of the spectra. It is clear that the
behavior shown by the data of Speaker and Ailman follows

from the choice of normalization parameter, displacement

thickness, but it is not clear what other choice or combina-

tion of parameters should be made. Figure 20 unfortunately

appears to represent the present state of the art for
wind tunnel measurements.

lO



Space-Time Pressure Correlations

Interest in the space-time surface-pressure correlation
of the turbulent boundary layer stems primarily from the
fact that a knowledge of the complete correlation is suffi-
cient to calculate the response of a structure excited
by the boundary layer. It has been pointed out (ref. 4)
that the response of a structure excited by a turbulent
boundary layer is unfortunately rather sensitive to the
fine details of the space-time surface-pressure correlation.
In addition to the primary interest in pressure correlations
for investigating structural response, correlation measurements
are of interest to provide insight into the basic mechanics
of the turbulent boundary layer. For example, estimates
of the convection velocities (refs. I0, ll, 13, 19, 20, 21)
lifetimes (refs.lO, 22) of the eddies which produce the
random pressure fluctuations in the turbulent boundary
layer have been deduced from correlation measurements.

Table II presents a summary of wind tunnel pressure
correlation measurements. A review of these measurements
indicates that, although the investigators have obtained
quite detailed measurements of the correlation properties,
there exists disagreement in the different measurements
of some of the basic properties of the surface-pressure
correlations. Efforts to relate these experimental discrep-
ancies to differences in the flow conditions have been
frustrated by the present lack of knowledge of the basic
physics of the turbulent boundary layer.

Terminology. - Before discussing the wind tunnel

measurements, it is convenient to define a coordinate

system and review some terminology relevant to cross-

correlations. Let us define an orthogonal coordinate

system x, z in the plane of the wind tunnel wall. Let

x be the coordinate in the direction of flow and z be

the coordinate inlthe direction transverse to the flow.

The complete space-time surface-pressure correlation

R(x, z, t; x + 6, z + _, t + _) is a cross-correlation

obtained by multiplying together two surface-pressure

measurements and then time-averaging the resultant product.

ll



TABLE II

SPACE-TIME CORRELATION MEASUREMENTS

OF BOUNDARY LAYER PRESSURE FLUCTUATIONS

INVESTIGATOR

MACH NUMBERS

8 (ln.)

Bull, Wilby
and

Blackman

(ref. ll )

0.3 and 0.5

approx.
0.05 to 0.15

approx.
0.15 to 0.51

Speaker
and

Ailman

(ref. 19)

0.59, 1.41
3.45 and 3._8

approx.
0.03 to 0.35

approx.
0.16 to 2.6

Seraflni

(ref. 13 )

0.6

0.32

0.38

MEASUREMENTS REPORTED

I. Autocorrelatlons

2. Longitudinal
correlations

3. Transverse
correlations

4. 0ff-Axls

correlations

5. Spatial correlation
contours

6. Convection velocity

vs longitudinal

sepratlon

7. Convection velocity

vs frequency

SPECIAL TYPES OF

MEASUREMENTS

x

X

X

X

X

x

X

X

X

x

X

x

X

X

X

X

X

Correlations

of narrow-

band pressure
fluctuation
imeasurements

Correlations

in perturbed

supersonic
flow

Effects of

assuming

separable
correlations

Correlations

of low and

high pass
filtered

pressure
fluctuation

measurements
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TABLE II (cont.)

SPACE-TIME CORRELATION MEASUREMENTS

OF BOUNDARY LAYER PRESSURE FLUCTUATIONS

INVESTIGATOR

MACHNUMBER

5 (in.)

D/G*

MEASUREMENTS REPORTED

1. Autocorrelations

2. Longitudinal

correlations

3. Transverse

correlations
4. Off-axls

correlations

5. Spatial correlation
contours

6. Convection velocity
vs longitudinal

separation

7. Convection velocity

vs frequency

SPECIAL TYPES OF

MEASUREMENTS

Maestrello

(refs.14,15,22,23)

o.5e

o.155

0.4

X

X

Willmarth

and

Wooldridge

(ref. lO)

approx.
o.18

0.5

o.33

X

X

X

X

Correlations

of narrow-

band pressure
fluctuation

measurements

Eddy lifetime

vs Mach number

X

X

x

X

Spatial

decay of

wave number

components

3-D plot of

longitudinal

space-tlme
correlation

13



One pressure measurement is taken at the point (x, z)
on the surface at time t, and the other measurement is
taken at a different point (x + _, z + _) on the surface
at a different time T + T.

In all the investigations summarized in Table II,
except the perturbed flow study of Speaker and Ailman
(ref. 19), it is assumed the surface-pressure field is
spatially and temporally homogeneous, so that the correlation
is a function only of the spatial differences _, _I andthe temporal difference _, and can be written as _, _, T).
The inhomogeneous cases considered in reference 19 give
rise to correlations which are functions of the measurement
positions as well as the separations. In actuality the
correlations reported by the various investigators are
special cases of the complete space-time surface-pressure
correlation. We have used the following terminology
in Table II and in the text: R(O, O, _) autocgrrelation;
R(_, 0, 0) longltudinal correlation; R(0, _, 0) transverse
correlation; contours of constant R(_, _, 0) - spatial
correlation contours; R(_ o, 0, T) longitudinal space-tlme

correlation (_o indicates a constant spatial separation);

and R(0, _o' T) transverse space-tlme correlation.

Correlation results. - The cross correlation is
the Fourier transform of the cross power spectral density.

The autocorrelation is the transform of the power spectral

density function. This relationship has been used by

Speaker and Ailman (ref. 19) to determine the power spectral

density of the turbulent boundary layer pressure fluctuations.
The same relationship has been used by others (refs. il

and 22) as a check on their correlation measuring equipment.

Measurements of the longitudinal and transverse corre-

lations reported by the authors listed in Table II are

presented in flgures21 and 22. With one exception (Maestrello)
the subsonic data in figure 21 show that the correlation

function drops to zero In the direction of fl0w Within .....

a space of the order of three to five times the displacement

thickness, and stays negative. The correlation gradually

approaches zero at some point beyond twenty times the

displacement thickness of the boundary layer. The one

supersonic measurement indicates the same general trend
but the zero crossing occurs in a much shorter distance.

14
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In plotting the data of Willmarth and Wooldridge
(ref. I0) in figure 21 note has been taken of the fact

that their space-time correlations show the presence of
an acoustic disturbance traveling upstream. This disturbance

had the effect of introducing positive correlation near

zero time delay which only became significant for values
of the transducer separation distance of the order of

5 to 7 times the displacement thickness. In replotting
the data the hump in the correlation function due to the

acoustic signal has been edited out in order to present
the estimate of the longitudinal correlation shown in
the figure.

The data of figure 12 show that the correlation

laterally remains positive and gradually approaches zero

at a distance greater than twenty times the boundary layer

displacement thickness. Again the one piece of supersonic
data indicates that the correlation approaches zero in

a shorter distance than does the subsonic data. The

trends indicated in figures 21 and 22 have been observed

by other workers as well (for example, see refs. 6 and 24).

As shown In Table II, in addition to longitudinal

and lateral spatial correlatlon, lnvestlgations have been

carried out at various off-axis directions to the flow.

Several authors have also presented contour plots of

constant correlation R(_, _, 0) (refs. iI, 19, 21).
As might be expected from inspection of figures 21 and

22, such plots strongly show the differences between the

various experimental results and do not look at all alike.

It is suggested that one might draw mean curves through
the data given in figures 21 and 22 and use these to obtain

estimates of contours of constant correlation. The off-axis

spatial correlations indicate that such contours would take

on a figure-elght configuration.

References 10, ll, 13, 19, and 22 listed in Table II

all contain measurements of the longitudinal space-time

correlatlonR(_, 0, T), with a fixed longitudinal transducer

separation _o" _References ll, 13, and 19 also contain

measurements of the transverse space-tlme correlation

R(0, _o' T) obtained for fixed transverse transducer

15
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separation. In addition, reference II contains longitudinal
and transverse space-time correlations of surface-pressure

measurements which have been filtered in narrow bands

and reference l0 contains longitudinal and transverse

space-time correlations of surface-pressure measurements
which have been filtered by hlgh-pass and by low-pass

filters.

Speaker and Ailman (ref, 19) considered the possibility

of factoring complete space-time correlation into three

functions, each of which depends only on one separation
variable. For the flow conditions investigated, it was

concluded that the correlation could be expressed as the

product Cl (_, _) C2(T) of one function depending only

cn the spatial separation variables and another function

depending only on the time delay. However, it was concluded
that separation of the spatial correlation function C1 (_,_)

into two functions C3(_) and C4(_) resulted in considerable

error, even for the case of unperturbed supersonic flow.

In addition, it was concluded that, in the case of supersonic

flows perturbed by steps or shocks, the spatial part

Cl(_,_) of the correlation behaved differently in different

spatial regions of the flows, whereas the temporal part

C3(T ) of the correlation behaved similarly in the different

spatial regions of the investigated flows.

C_onvection Velocitie s. - Figure 23 presents estimates

of the broad band convection velocity as a function of

longitudinal separation determined by various authors
listed in Table II. [The convection velocity corresponding

to the longitudinal separation Go isusually calculated

from measurements of the longitudinal space-time correlation

R(_o, 0, T) by dividing the separation G o by the time

delay T for which the correlation R(_^, 0, T) is a maximum.

It has been argued (ref. 4) that a mo_e acceptable, but

more difficult, method of measurin_ the convection velocity

would be to divide the separation _ at which the longitudinal

space-time correlation R(_, 0, To) is a maximum by the

flxed time delay To.] The convection velocities shown

16
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in the figure all start at approximately 0.5 U_ (one

half the free stream velocity), increase quite rapidly

with increasing longitudinal separation, and level off

at a value of approximately 0.8 U at a longitudinal

separation of,approxlmately 10-30 0 . Since experimental

measurements (refs. lO, 22) indicate that the high frequency

eddies decay more rapidly than the low frequency eddies,

the increase in convection velocity with increasing longi-
tudlnal separation is usually interpreted as evidence

that the high frequency eddies travel slower than low

frequency eddies.

Bull Wilby and Blackman (ref. II), Bakewell (ref. 6)

and Corcos (ref. 21) have investigated the convection

velocity as a function of frequency (dispersion) obtained

from narrow-band measurements of the longitudinal space-

time correlation. These measurements are presented in

figure 24, where the dimensionless convection velocity

has been plotted as a function of dimensionless wavelength
(reciprocal frequency). The measurements of Bull et al

have been taken directly from the reference, but in order

to include the work of Bakewell and Corcos, an estimate
of the displacement thickness was required. In both

cases fully turbulent flow in a pipe was investigated.
We assumed that the displacement thickness was 1716 of the
pipe diameter.

The measurements shown in figure 24 indicate that

the high frequency, short wavelength components travel

more slowly than the low frequency long wavelength components.

The measurements are consistent with the physical picture

that the high frequency components are produced by small

scale eddies, which are located close to the surface

and therefore do not travel as fast as the low-frequency
large-scale eddies, which project further out into the

boundary layer.

The data in figure 24 may reasonably well be represented

by a straight line with a slope of the order of 0.09.
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Structural Response

Work on structural response to turbulent boundary
layer excitation has been carried on by Lucio Maestrello
of the Boeing Company (refs. 14, 15, 22_ 23), J. F. Wilby
et al of the University of Southampton (refs. ll, 25, 26)
G. R. Ludwig of the University of Toronto (ref. 24),
D. A. Bies of Bolt Beranek and Newman Inc. (ref. 27),
and by Paul F. R. Weyers of California Institute of Technology
(ref. 28). The first four investigators placed a test
panel flush with the side wall of a wind tunnel for their
investigation. The last investigator listed above investi-
gated the response of a thin Mylar tube to turbulent flow
through it. Information pertinent to these tests is given
in Table III.

In all cases of response investigation except that
of Bies, the displacement response was measured, and the
resulting spectra were dominated by the fundamental modes
of the panel or tube and the first few overtones. Workers
at Southampton have identified the various panel modes
and have compared measured frequency and amplitude with
the predictions of theory outlined by them. The theory
predicts fairly well the resonant frequencies observed
but gives poor agreement with the measured amplitudes.

The workers at Southampton have used their theory
to predict trends in response with variation of various
parameters such as boundary layer displacement thickness
and panel thickness. They have then sought to verify
experimentally the dependence of panel response on these
parameters, with mixed success.

In addition to investigating the response of panels
to boundary layer excitation, the wDrkers at S0uthampton
have also investigated the response of their panels to
a siren and an air Jet. Their results indicate that the
acoustic noise sources and the turbulent boundary layer
are equally effective in producing displacement for a
unit mean square pressure fluctuation. This matter is
discussed further later in this section.
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TABLE III

WIND TUNNEL STRUCTURAL RESPONSE MEASUREMENTS

INVESTIGATOR

Lucio Maestrello

(refs. 14,15,22,
23)

J. F. Wilby

Bull, Wilby and
Blackman

Wilby and Richards

(refs. 4,25,26)

G. R. Ludwig
(ref. 24)

Paul F. R. Weyers

(ref. 28)

D. A. Bies
(ref. 27)

PANEL DIMENSIONS

Size Thickness

(inch) (inch)

aluminum

7 x 12

steel
4x2

3.5 x 3.5
4 x 2.75

steel
ll x ll

mylar
cylinder
1.O dia.

0.020
0.040
0.060

O.O80

0.005
O.OlO

o.o15

o.oo15
0.002
o.oo4
o.oo8

o.oo5
0.001
0.0021

0.012

0.022

MODAL DENSITY

RANGE

fundamental

and first few
overtones

fundamental

and first few

overtones

fundamental

and first few
overtones

fundamental
and first few

overtones

MACH
NUMBER

0.34
to

0.64

0.05
to

0.17

0.II
to

0.28

DISPLACEMENT

THICKNESS

(inch)

0.155

o.o53
to

o.176

.......o.o54

0.43

QUANTITY
MEASURED

displacement

radiated power,
displacement

radiated power

accelerationsteel

11.5 dla.

high modal
density

1.4
3.5

0.068
0.306

radiated power,

displacement
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Maestrello and Ludwig have investigated both panel

response and radiated sound power from panels of comparable

size. As Table III shows, however, Ludwig has looked at

very thin panels, whereas Maestrello's panels are an
order of magnitude thicker. In both of these cases the

panel response was dominated by the fundamental mode of

the panel and its first few overtones. Ludwig concentrated

his effort on the measurement of radiated sound power

and reports only one measurement of panel displacement.

Maestrello reports many measurements of both displacement
and radiated sound power.

Typical of the spectra of the radiated sound power

observed by Maestrello and also of Ludwig and Weyers is

the set of curves shown in figure 25. In the figure is

shown the sound power in one-third octave bands of noise

radiated by a 0.080 inch thick panel into a reverberant

room. The peaks in the spectra may be associated with

the fundamental frequency of the panel and its first few
overtones.

From the figure we notice that two things happen

as the flow velocity increases: The general level rises,

and the response extends to higher frequencies. The first

observation is understandable in terms of increased pressure

fluctuation levels with increased flow, since the form

of the pressure normalization parameter implies that the

low-frequency pressure spectrum increases proportionally

to the cube of the flow velocity. The second observation

may be understood on the following basis. If we define

a hydrodynamic coincidence frequency as the frequency

at which a flexural wave in the panel is equal to the

mean convection speed of the turbulent boundary layer

(taken as about 0.8 of the free stream velocity), we find

that this frequency is directly proportional to the square

of the flow velocity and inversely proportional to the

panel thickness. The spectra shown in the figure begin

their sharp upper frequency roll off near this coincidence

frequency in each case. Thus, the strongly excited portion

of the panel response spectrum lles between the fundamental

frequency and the coincidence frequency.
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Maestrello, Ludwig, and Weyers all report that the
radiated sound power is proportional to the fifth power
of the free stream velocity. This power law dependence
has been observed in at least one flight measurement
(ref. 29). This relationship is not precisely followed,
however, since power law variations about the fifth power
were also observed. In fact, Maestrello showed that, at
high Mach numbers for all but his thickest panel, the
power relationship abruptly decreased to the 2.5 power
law. Data which illustrates these findings taken from
MaestrelloVs work is shown in figure 26.

The dependence of radiated power or panel displacement
response on panel thickness may be inferred from the data
in figure 26. Maestrello, Ludwig, and Wilby found that
the panel displacement is proportional to some inverse
power of the panel thickness. The power ranges between
1.O and 1.6. Maestrello summarizes these findings and
compares them with the theoretical predictions of various
workers whose predictions range between 1.O and 3.0.

Figure 26 illustrates another fact discovered by
these investigations. The radiated sound power follows
the mean square amplitude of response of the panels when
the low order modes dominate the response. This conclusion
is borne out also by comparisons of displacement and
radiated power spectra given by Ludwig and Maestrello.
This conclusion is contrary to what would be expected if
the radiation impedance of the panel had a significant large
real part, since in this case the radiated power should
follow the panel velocity rather than the displacement.
It should be remembered that if the velocity remains
constant with increasing frequency, the displacement should
decrease in proportion to the frequency, so that the effect
discussed here should be readily observable.

An effort was made to find relationships which would
allow one to scale Maestrellots and Ludwig's work, but
no simple scaling laws could be found. Ludwig gives
relationships which seem to hold for his data, but they
cannot be used to scale Maestrello's results. This diffi-
culty may come about because Ludwig's panels may be controlled
by membrane forces rather than panel stiffness forces.
This point is not clear.
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In summary we may say that the investigations of the

first four investigators listed in Table III have shown

the following:

(l) The displacement response of a lightly damped

panel to turbulent boundary layer excitation

is always dominated by the fundamental of the

panel and its first few overtones.

(2) The frequency range most strongly excited extends

up to the frequency of coincidence between flexural
waves and the convected turbulent boundary layer.

Above this frequency the displacement spectra

fall off rapidly.

(3) In the frequency range of low modal density

the radiated sound power is proportional to

the mean panel displacement rather than panel

velocity.

(J4) In the frequency range of low modal density

the radiated sound power is proportional to

the fifth power of the free stream velocity

over a range of low Mach numbers, but at high

subsonic Mach numbers the power law decreases

to about the 2.5 power.

(5) No theory apparently exists which gives good

quantitative agreement between predicted and

observed response, and no empirical relationships

have been discovered by which one set of data

may be scaled to that of another set of data.

As mentioned earlier and as pointed out in Table III,

Bies has carried on quite a different investigation of

panel response. In his experiment the panels investigated
were highly damped, and the acceleration response (rather

than displacement response) was measured. Consequently,

the low order modes were deliberately suppressed. The

frequency range of high modal density was investigated,

where it was shown that fairly good agreement between

theory and experiment exists. In actual flight measurements

the dominant portions of the internally observed spectra
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(for example, the vibration spectra from which curves

of equivalent acoustic fields have been generated as

in figures 36 through 41) are in the frequency range

of high modal density for the skin panels. Thus, Bies

claims that his results may be scaled to estimate response

of full-scale supersonic transport panels.

In addition to investigating response of panels

to unperturbed flow, Bies has also investigated the effect

of mild perturbations such as an impinging shock and an

expansion. He has also investigated the response of his

panels to a reverberant acoustic field and has compared

the response to such excitation to the response to a

turbulent boundary layer. In addition, Bies_s investigation

has been carried out in the supersonic flow range, while

all other investigations have been in the subsonic flow

range.

The following conclusions are drawn from Bies's report:

(i) Fairly good quantitative agreement was obtained

between theoretically predicted and measured

panel response to turbulent boundary layer
pressure fluctuations for the cases of unperturbed

flow.

(2)

(3)

To a fair approximation, one could associate

a single transfer function with a panel, relating

acceleration response to turbulent boundary

layer pressure fluctuations under conditions

of unperturbed or mildly perturbed flow.

At Mach 3.5 boundary layer pressure fluctuations
were of the order of b dB more effective in

driving the 0.22" thick panel than comparable

reverberant acoustic fields. This is in agreement

with theory, which predicts the ratio to be

7 to 8 dB.

(4) At Mach 1.4 two regimes were observed. In the

low-frequency range, a reverberant acoustic

field was slightly more effective in driving

the panels than were boundary layer pressure
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fluctuations. In the hlgh-frequency range,
the boundary layer pressure fluctuations were
as much as 7 or 8 dB more effective in driving
the panel than the reverberant acoustic field.
This observation is in qualitative agreement
with the predictions of theory.

This last result appears also to be in qualitative
agreement with the Southampton work which showed equivalence
between acoustic and aerodynamic excitations. The Southampton
investigation was in the low-frequency low-Mach number
range, where Biesls work would indicate that such equivalence
would exist.

FLIGHT MEASUREMENTS

Boundary Layer Pressure Fluctuation Measurements

Flight measurements of boundary layer pressure fluctua-
tions have been assembled from various sources (refs. 29
through 41) and are presented in figures 27 through 42.
In most cases the data come from published reports, while
in the cases of Titan II, Titan III, and Saturn the data
have been acquired by the author through contact with the
oeople who made the measurements. Microphone size correc-
tions have been made by the author wherever it was clear
that the corrections were necessary.

In practically all cases of flight measurements
considered here, no information about the boundary layer
was available. In order to normalize the available data,
the procedure outlined above was used. The altitude,
air speed or Mach number, and a characteristic dimension
were used to estimate a Reynolds number. From the estimated
Reynolds number, characteristic dimension, and Mach number,
estimates were made of displacement thickness and coeffi-
cient of skin friction. The normalizations used in most
of the figures are thus necessarily approximate. However,
the data contained in figures 27 and 30 are based on

measured values of the boundary layer parameters.
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The data in the figures have been placed in two
groups, with measurements on airplanes in the first group
and measurements on space vehicles in the second group.
In general an effort was made to place the airplane
microphones in regions of relatively smooth flow, but
this was not possible for the space vehicle microphones.
In fact, the space vehicle microphones were often in
regions of highly perturbed flow (shocks or separated flow).
Thus our figure grouping places the less perturbed flows
first and the more perturbed flows last. Following this
general line, the various measurements have been ordered
in order of increasing Mach number within each group,
assuming that flow will more likely be perturbed at higher
Mach numbers than at lower Mach numbers.

The airplane flight data contained in figures 27
through 34 show the following trends: a general buildup
in the low-frequency portion of the normalized spectrum
with increase in Mach number, and a general asymptotic
approach to the same values at high frequencies for all
Mach numbers. The glider data contained in figure 27
form a lower bound for low Mach number and least perturbed
flow. The glider data also define the as_mptotlc behavior
of all data at high frequencies. The C-141 data of figure 30
form a kind of upper bound for relatively unperturbed flow
but high subsonic Mach number at low frequencies. The
data of figure 33 appear to be rather erratic for reasons
unknown and perhaps should not be compared with the other
data, since they were taken on a nose cone which does
not simulate a flat plate very well. In summary, the
airplane flight data appear to be fairly self-consistent
and in line with wind tunnel measurements.

The spectrum levels observed on various space vehicles
shown in figures 35 through 41 are generally quite high
in the low portion of the spectrum but are in line with
the idea that they might asymptotically approach the
high-frequency spectrum levels of unperturbed flow of
figure 27. The very high levels observed on the space
vehicles are thought to be due to highly perturbed flow.

The data shown in figure 42 were taken on a Mercury
test vehicle. The configuration was such that the flow
was quite strongly perturbed. The very high levels in
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the low-frequency range are thought to be due to the
presence of a spoiler which strongly affected the subsonic
and just sonic flow but was relatively ineffective at
supersonic Mach numbers.

Structural Response

In figures 32 and 36 through 41 an additional bit
of information has been included. In these figures we
have inserted solid lines labeled "equivalent acoustic
field." The lines are based on measurements of strain
or acceleration on the skin or of acceleration on skin-
mounted components under two conditions. The structure
is excited by acoustic noise in the first condition and
by turbulent boundary layer pressure fluctuations in the
second. The lines represent the acoustic spectrum whlch

would produce the same structural response as observed

when excited by the boundary layer pressure fluctuations.

Comparison of the equivalent acoustic pressures (represented

by the line) with the measured boundary layer pressure
fluctuations (shown as points) shows the relative efficiency

of acoustic and aerodynamic exicitation.

For most of the measurements, the equivalent acoustic

pressure spectra are close to the boundary layer spectra.
From this we conclude that acoustic and aerodynamic pressure

are approximately equally efficient in exciting structural

response, for the configurations measured. However, the

data shown in figures 37 and 38 are significant exceptions
to this conclusion. In these two cases acoustic and

aerodynamic exictation appear to be equally effective
over the low-frequency portion of the spectrum, but above

a Strouhal number of about 0.2, the acoustic excitation

becomes less effective, as indicated by the higher equivalent

acoustic levels required to achieve the same response as

produced aerodynamically. This general behavior is in
line with Bies's observations on panel response in a wind

tunnel, discussed above. The order of magnitude difference
in efficiency from the flight data is also in agreement

with Bies's results.
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CONCLUSIONSAND RECOMMENDATIONS

The principal conclusions of this report are as
follows:

(1)

(2)

Fourteen published wind tunnel measurements

of boundary layer pressure fluctuations show

spectra that vary widely one from another.

However_ over a limited frequency range,

0.05_ /U_<5.0, sufficient experimental data

agree to define a characteristic spectrum

about which many of the measurements cluster.

Flight measurements of boundary layer pressure

spectra in unperturbed flows are in general

agreement with each other and with the charac-

teristic spectrum of the wind tunnel measurements.

(3) Flight measurements of perturbed flow generally

show a buildup of the low frequency portion

of the spectrum. The spectrum asymptotically

approaches the unperturbed flow spectrum at

high frequencies.

(4) There is general agreement that the mean convection

velocity determined by space-time correlation

measurements of the turbulent boundary layer

increases with spatial separation between obser-

vation points and that the asymptotic value

for large separation distances is about 0.8

of the free stream velocity.

(5)

(6)

The narrow band convection velocity is approximately

proportional to (o6*/U_) -'09 for subsonic flow.

Longitudinal and lateral spatial correlation

are in general agreement though they differ

widely in detail. As a consequence there is

a general lack of agreement between various

investigators on the shape of the contours

of constant correlation in the turbulent boundary
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(7)

(8)

(9)

(io)

layer, although the measurements have all been

made in approximately the same Mach number

range.

Measurements of structural response of panels

excited by boundary layer turbulence in wind

tunnels have shown that the displacement response

is dominated by the first few modes of the

panel. At low flow velocities the displacement

response is proportional approximately to the

fifth power of the flow velocity, but at high

flow velocities the dependence decreases to

the 2.5 power. No general theory or empirical
relations exists which enable the scaling of

one set of panel displacement response measurements

(first few modes) to another set of measurements.

Sound power radiated by aerodynamically excited

panels is proportional to the mean square displace-

ment of the panel and thus follows the power

law relationships to flow velocity described
in item 6.

In the frequency range of high modal density,
one set of acceleration response measurements

shows reasonable agreement with the predictions

of theory. At low frequencies acoustic and

aerodynamic excitations are approximately equally

effective in exciting panel response. At high

frequencies aerodynamic excitation may be as
much as 8 dB more effective than acoustic noise

in exciting panel response. The frequency of
crossover between these two ranges decreases

with increasing Mach number, but the general
conditions which determine this crossover frequency

quantitatively remain to be determined.

Measurements of the structural response of flight

vehicles show a relative response to acoustic

and aerodynamic excitations in qualitative agree-
ment with the wind tunnel measurements described

in item 9.
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(n) Although there have been many measurements of

surface pressure fluctuations, very few measure-

ments include sufficient aerodynamic data to

permit comparisons with other data, or to extrapo-
late the data to other conditions. In order

to generate the aerodynamic data, a system of

engineering curves has been developed from

published measurements of local skin friction

and boundary layer profiles to enable the esti-

mation of boundary layer parameters for Mach

numbers up to 4 and Reynolds numbers based on

a chacteristlc length up to 2 x lO 9. Use of

this system of curves has enabled the uniform

presentation of flight and wind tunnel surface

pressure measurements for Intercomparison in

this report.

In addition to the specific conclusions drawn from

the body of material reviewed in this report, some general

conclusions and recommendations may be drawn. A great

many wind tunnel measurements of turbulent boundary layer

pressure fluctuation have been reviewed. In spite of

apparent care taken by the various investigators, their

spectrum and correlation results show wide variation when

compared with each other, although each investigator generally
presents data that are quite self consistent. One exception

exists, however, where the investigators made a great

many measurements over an extended region in the test
section of their tunnel (ref. 19). Their results showed

rather wide scatter, but their results are well within
the scatter of all of the measurements discussed in this

report. One wonders whether other experimenters have

looked over extended regions of their test sections and

found similar nonuniformity of measured results.

The flight measurements reviewed in this report seem

generally to be quite self consistent, perhaps more consistent
than are wind tunnel measurements. One wonders whether

the presence of opposite walls in the wind tunnel may
introduce subtle local perturbations of the boundary

layer that are only detectable as changes in the structure

of the pressure fluctuations. Such subtle perturbations

may strongly affect local measurements of pressure fluctuations
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or the correlation properties of the pressure field without
being representative of the overall boundary layer.

Wind tunnels have been used for studying panel response.
It is quite likely that if local perturbations to the
boundary layer do exist as suggested above, that the overall
response of test panels will not be seriously affected,
since the panel may be thought of as integrating the forces
that it sees. It thus may act to smooth or average the
pressure fluctuation field in the same way as flight
hardware might do. If this is indeed the case, it would
appear that measurements of the detailed space-tlme properties
of the pressure field could not provide information that
can readily be related to structural response. This line
of argument leads to the recommendation that wind tunnel
Investlgatlonsahould emphasize response measurements and
deemphaslze pressure measurements.

However, most of the response experiments performed
to date have been concerned with displacement response
of relatively small panels. If the linear dimensions of
these experiments are scaled to sizes of interest to the
designers of high performance alrcraft, the scaled frequency
ranges fall well below the frequency ranges of interest.
For the purpose of the designer, the models investigated
should simulate real structures and should cover the fre-
quency range of interest. If such programs are undertaken,
then particular care should be taken to properly scale such
_ertlnent parameters as the hydrodynamic coincidence fre-
quency and the boundary layer thickness. Such measurements
should be performed in conjunction with suitable flight
measurements in order to verify the scaling relationships
utilized in designing the model experiment.

The data on flight measurements (ref. 39) and wind
tunnel measurements of structure response (ref. 27) indicate
that the use of one-to-one correspondence between aerodynamic
and acoustic excitation can be very misleading. Also the
use of inflight pressure data can be misleading if the
pressure transducer is located near a region of strongly
perturbed flow confined to a very local region about the
transducer. To avoid these problems, it is recommended
that "equivalent acoustic fields" such as presented in
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this report be used for estimating the response of flight

hardware and designing ground acoustic tests to simulate

the flight environment.
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APPENDIX A

INVESTIGATION OF BOUNDARYLAYER PARAMETERSAT

HIGH REYNOLDSNUMBERSAND MACHNUMBERS

At subsonic Mach numbers and low Reynolds numbers,
certain well defined relations exist between the boundary
layer parameters. These relations are essentially inde-
pendent of the Mach number, and are defined by the charac-
teristic length and the Reynolds number. For example,
Schlichting (ref. A1) gives the following relations for
the boundary layer thickness

5-- = 0 3[ Re_I/5-
X " _. (A1)

the displacement thickness

(A2)

and the momentum thickness

e= 7
7-_ 8 . (A3)

These relations follow when the boundary layer profile

follows the well known seventh power law. At high Reynolds
numbers and Mach numbers, the experimental evidence reviewed

here indicates that the relationships given above must be
considerably modified.

Boundary Layer Thicknesses

In figures A1, A2, and A3 we have plotted data from

.several sources (refs. A2-A7) to determine the behavior of the
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boundary layer thickness, the boundary layer shape parameter,

and the ratio of boundary layer thickness to momentum thick-

ness. The form of the presentations is the result of empiri-

cal experimentation with the data to determine Mach number

and Reynolds number dependence. In each figure we have indi-

cated our choice of an empirical equation which seems both
to fit the data best and to take on a limiting form at low

Mach numbers and Reynolds numbers consistent with equations

AI, A2, and A3.

Some remarks about the data shown in the figures are in

order. In many cases a good deal of additional work was

required to obtain values of such parameters as displacement

thickness from the original published data. In a few cases

Judicious guesses had to be made to fill in partially com-
plete information. In drawing the empirical curves of best

fit, a knowledge of the reliability of the data shown was

kept in mind. In any case the final results, the empirical

equations, are based on the best information available to
us and have been derived using sound engineering principles.

The empirical system of equations given in the figures A1,

A2, and A3 were used to determine the following set of

equations.

5 = 0 37 Rexl/5 1 + Rex
" 6.9 x io

5* [1.3 + 0.43M2][5/x] (A5)
= 1/3

10.4 + 0.5M 2 [I + 2xlO -8 Re x ]

__ = [5/x] (A6)
X

10.0: + 0.5M 9 [I + 2xlO "8 Rex ]I/3

Figures i, 2, and 3 of the text were prepared using these

formulas.
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Local Coefficient of Skin Friction

A voluminous literature exists describing the local
coefficient of skin friction. The measurement of the
quantity seems to contain a number of pitfalls, so that
the calculation of the local skin friction coefficient
from empirically based equations appears to lie in a somewhat
controversial field. We have chosen to follow the lead
of Coles (ref. A7) and have attempted to extend his formula-
tion to high Reynolds numbers.

In figure A4 we have plotted the local coefficient
of skin friction against Reynolds number based on momentum
thickness, where both parameters are expressed in trans-
formed coordinates based on a reference sublayer temperature
(ref. AT). The references from which the data were taken
are given in the figure. The solid line represents Coles'
empirical approximation to all of the data available to
him at the time of publication of his work, September 1962.
The dotted llne represents our extension to Coles' work
based on the plotted points. The plotted points shown in
figure A4 show more scatter and are generally somewhat
below Coles' solid line and our dotted extension. The
scatter of our data, which is greater than that of Coles'
reduced data, is thought to be due to the approximations
that we have made in representing the boundary layer.
We have used the comparison between our plotted data points
and Coles' line where they overlap to determine the adequacy
of our approximations. This comparison has also been used
to determine the placement of our dotted extension.

u

Procedure for Computing cf

The following procedure was used to enter the data

in figure A4. It is based on an interpretation of Coles'

work, and it contains a number of approximations to simplify

the necessary computation. Coles shows that all available
data on measured local skin friction for a turbulent

boundary layer may be plotted on a single llne if the

appropriate parameters are referenced to local conditions

at a mean position in the boundary layer. He finds that
the local Reynolds number based on the distance from

the wall to the mean position should have the value

Res = 8500. (A7)
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This value will be used to compute the mean position
temperature relative to the free stream static temperature.

The following relations will be assumed to hold for
air where the ratio of specific heats _ = 7/5.

T I + O. 2r_r
- = r = 0.89
T_ 1 + 0.2M2r '

(A8)

1/2

(A9)

T

po_ T
(AIO)

a = 0.905 (All)

x8 = (Lug)7 (A12)

Equation A8 follows from equation 15.7 of reference A8
and holds for air. It is assumed that the recovery factor r

is in general different from unity and equal to 0.89.

Equations A9 and AlO follow from the assumption of a perfect

gas. Equation All holds _airly well for air over the
temperature range from 70 K to 350VK, according to reference

A9. Equation AI2 seems to fit velocity profile data available
to us well enough for our purpose (ref. A6,A10).
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We proceed as follows by forming the relation

Rey=U p _y

Re 5 U_ p_ _ 5

(AI3)

Use of equations A9 through AI2 enables the transformation

of equation A13 to read

i +a
8

(AI4)

We introduce our expression for the boundary layer thickness,

equation A4 and write

IRe 5 = Re x _ = 0.37 Ke x + .9 x I0
(A15)

From equation A8 we obtain

= - +

Use of equation AI6 allows us to write equation AI4 as

IT_l

Rey = Re 51T- I

(A16)

(A17)
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We set the boundary layer Reynolds number given above equal
to Coles' value given by equation AT. The corresponding
temperature becomes the mean sublayer temperature Ts. Thus,
equation AI7 becomes

12.31 = Rex
L<

= i + Rex

6.9 x lO 7
(AIS)

Equation AI8 defines the quantity Ts/T _ in terms of the free

stream Mach number and the Reynolds number based on charac-

teristic length. This approximate equation was used to
compute the value of the temperature ratio which was then

used to compute the transformed local skin friction coef-

ficieot and Reynolds number. For the latter purpose the

following equations were used

TC )_f = cf + 0.2rM 2 (AI9)

(%

He_ = Re x (A20)
e

Procedure for Computing cf

The following procedure was used to calculate the curves

for local skin friction coefficient shown in figure 4 of the

text. The method makes use of the solid curve with its dotted

extension shown in the figure A4 and is based on an
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interpretation of Coles' work due to Roshko (ref.All).

steps involved in the computation are as follows:

The

I. Assume values of Reynolds number Re x and Mach number M.

Determine e/x using figure 3 of the text and compute Re e.

2. Assume a value of k and compute Ne_ = k Re 0.

(One may start with a value of unity for k.)

3. Determine a value of Kf from Coles' curve in figure A4.

4. Compute

T s
m

Tw

@

= I+ 17.2

(The above equation follows from Coles' work.)

Compute

+

• Compare k of step 5 with k of step 1.

a) if they are the same, proceed to step 7

b) if they are different, use the k of step 5 or a new

choice of k and repeat steps 2 through 5.

7. Compute the ratio

. Compute

Tooo i + O. 2M 2

Tw i + 0.2r_

cf = _f _-_-w I + 0.2
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APPENDIX B

PROCEDUREFOR ESTIMATING BOUNDARYLAYER PRESSURE SPECTRA

The following simplified procedure may be used for

estimating boundary layer pressure spectra for Mach numbers

up to 4 and Re_nolds numbers based on characteristic length
from lO 7 to lO _. It will be found to be of particular

use for new vehicle configurations, when a minimum amount

of aerodynamic information may be available.

Given:

q

U_

X

Free stream Mach number

Free stream dynamic pressure, in lbs/sq ft

Free stream flow velocity, in ft/sec

Distance from inception of turbulence (assume

approximately I0 ft or distance from leading
edge, whichever is greater)

I) Calculate the overall fluctuating pressure level

FPLoveral I = 20 loglo q + 84 dB
(BI)

The standard reference sound pressure of

2 x lO "4 dyn/sq cm has been used.*

Equation (BI) is based on the integration of the nor-

malized spectrum of Fig. 20 of the text. The value

of the integral, in conjunction with a mean value
for the local coefficient of skin friction in the

range up to Mach 2, then gives the ratio of overall

pressure fluctuation level to free stream dynamic

pressure as 0.0054. This value has been used in the

equation. It gives a value for overall sound pressure

level which may be three decibels too high for Mach

numbers greater than two.
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2) Calculate the displacement thickness

6" "
0.0016 X , 0 _ M= < 2

0.004 X , 2 < M= < 4

(B2)

3) Calculate the characteristic frequency

U@o

fo= o.i (BS)

4) Utilize the value of fo and Fig. B1 to obtain

the estimated boundary layer pressure spectrum.

The fluctuating pressure level in l-Hz bands

is obtained by adding the quantity (FPLoveral I -

lO log lO fo ) to the vertical scale of Fig. BI.

The spectrum shape of Fig. B1 pertains to unperturbed

flows. Strong perturbations tend to increase

the portion of the spectrum below fo" These

increases are typically 10-20 dB at i0 "l fo"

The engineering procedure presented here is valid for

a range of Reynolds numbers and Mach numbers which essen-

tially cover the range of interest for present-day booster

systems and supersonic aircraft. The effects of changing

the aerodynamic parameters may be evaluated from the

figures in the main body of this report.
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